25 สิงหาคม 2563

 Big Data คืออะไร

คำจำกัดความของ Big Data

เพื่อให้ความเข้าใจเกี่ยวกับ Big Data มีมากขึ้นเรามาทำความเข้าใจเกี่ยวกับคำจัดความของคำว่า Big Data กันก่อน ในราวๆปี 2001 Gartner ได้ให้คำจำกัดความของคำว่า Big Data ไว้ว่า เป็นข้อมูลที่มีความหลากหลาย มีปริมาณมากๆ และมีความเร็วมากๆ ซึ่งรู้จักกันในนาม 3Vs (สามวี)

พูดให้ง่ายๆคือ Big Data คือปริมาณข้อมูลที่มาก มีความซับซ้อน โดยเฉพาะที่มาจากแหล่งข้อมูลใหม่ๆ ด้วยปริมาณที่มากมายมหาศาลทำให้ไม่สามารถประเมินและวิเคราะห์ด้วยวิธีการ ซอฟต์แวร์ ฮาร์ดแวร์แบบเดิมๆ แต่ข้อมูลมากมายมหาศาลเหล่านี้สามารถนำมาใช้ประโยชน์ได้ในทางธุรกิจที่ในอดีตไม่สามารถใช้ได้

3Vs ของ Big Data

V ที่1 คือ VOLUME

ปริมาณข้อมูลที่มากเป็นปัจจัยที่มีความสำคัญ ในปริมาณข้อมูลที่มากมายมหาศาลนั้นที่เราจะต้องประมวลผลนั้นเป็นข้อมูลที่ไม่มีโครงสร้าง มีความหนาแน่นของข้อมูลต่ำ และข้อมูลพวกนี้อาจเป็นข้มมูลที่ไม่ทราบค่า เช่น ฟีดข้อมูลของเฟสบุ๊ค ทวีทเตอร์ การคลิ๊กบนเวปไซท์หรืออุปกรณ์แอพพลิเคชั่นต่างๆ หรืออุปกรณ์ที่มีเซนเซอร์ บางองค์การอาจมีข้อมูลให้ประมวลผลเป็นสิบๆเทราไบต์ หรือบางองกรค์อาจมีเป็น ร้อยๆเพตะไบต์

V ที่2 คือ VELOCITY

คือความเร็วของการรรับข้อมูลหรืออาจเป็นการกระทำใดๆ โดยปกติก็เป็นความเร็วสูงสุดที่ทำการสตีมข้อมูลลงในหน่วยความจำโดยตรงกับการบันทึกข้อมูลลงบนฮาร์ดดิสก์ เครื่องมือหรืออุปกรณ์ที่ใช้กับอินเตอร์เนตในสมัยนี้ก็เป็นการทำงานแบบเรียลไทม์หรือเกือบๆจะเรียลไทม์ ซึ่งจะต้องมีการประมวลผลแบบเรียลไทม์

V ที่ 3 คือ VARIETY

Variety คือความหลากหลายของชนิดข้อมูล ข้อมูลในสมัยก่อนมักเป็นพวกข้อมูลที่เป็นโครงสร้างและมีความพอดีกับฐานข้อมูลเชิงสัมพันธ์ ปัจจุบันข้อมูลมีขนาดใหญ่ขึ้นและเป็นข้อมูลแบบไม่มีโครงสร้างหรือกึ่งโครงสร้าง เช่น ข้อมูลแบบตัวอักษร ข้อมูลภาพ ข้อมูลเสียง ซึ่งต้องการการประมวลผลเพิ่มเติม เพื่อที่จะแปลความหมาย และหารายละเอียดคำอธิบายของข้อมูล (meta data)

คุณค่าและความจริงของข้อมูล Big Data

Big Data ในช่วง 2-3 ปีหลังมานี้ได้เพิ่มมาอีก 2 Vs คือ Value และ veracity ซึ่งคุณค่าและความจริง ซึ่งข้อมูลมันมีค่าอยู่ในตัวของมันเอง แต่มันจะไม่มีประโยชน์เลยถ้าเราค้นไม่พบคุณค่าของมัน และความจริงของข้อมูลและความน่าเชื่อถือว่าเราจะเชื่อถือได้มากแค่ไหน ก็มีความสำคัญเท่าเทียมกันทั้งคุณค่าและความจริงของข้อมูล

ในปัจจุบัน Big Data ได้กลายเป็นทุนหรือทรัพย์สินไปแล้ว ในบริษัทเทคโนโลยีขนาดใหญ่บางบริษัทมูลค่าของบริษัทเกิดมาจากข้อมูลของเขา และในขณะนี้เขาก็วิเคราะห์และประมวลผลเพื่อเพิ่มมูลค่าของข้อมูลให้สูงชึ้นไปอีกและด้วยความก้าวหน้าทางเทคโนโลยีในปัจจุบันส่งเสริมให้ราคาของอุปกรณ์การเก็บข้อมูลและคอมพิวเตอร์ลดลงแบบก้าวกระโดด ทำให้การเก็บข้อมูลง่ายและมีราคาถูก การเก็บข้อมูลและการเข้าถึงข้อมูลขนาดใหญ่สามารถทำได้ง่ายๆและมีราคาถูก ทำให้การตัดสินใจด้านธุรกิจมีความแม่นยำและถูกต้องมากขึ้น

การค้นหามูลค่าของข้อมูล Big Data มันไม่ใช่แค่การวิเคราะห์ธรรมดาเท่านั้น แต่มันต้องมีกระบวนการขั้นตอนทั้งหมด ซึ่งมีตั้งแต่การวิเคราะห์เชิงลึก ความต้องการของธุรกิจ ความสามารถในการถามข้อมูลที่ถูกต้องจากผู้บริหาร การจดจำรูปแบบ การให้ข้อมูลสำหรับสมมุติฐานต่างๆ และการทำนายพฤติกรรม เป็นต้น

ประวัติและความเป็นมาของ Big Data

ถึงแม้ว่าแนวคิดเรื่องข้อมูลขนาดใหญ่หรือ Big Data จะเป็นของใหม่และมีการเริ่มทำกันในไม่กี่ปีมานี้เอง แต่ต้นกำเนิดของชุดข้อมูลขนาดใหญ่ได้มีการริเริ่มสร้างมาตั้งแต่ยุค 60 และในยุค 70 โลกของข้อมูลก็ได้เริ่มต้น และได้พัฒนาศูนย์ข้อมูลแห่งแรกขึ้น และทำการพัฒนาฐานข้อมูลเชิงสัมพันธ์ขึ้นมา

ประมาณปี 2005 เริ่มได้มีการตะหนักถึงข้อมูลปริมาณมากที่ผู้คนได้สร้างข้นมาผ่านสื่ออนไลน์ เช่น เฟสบุ๊ค ยูทูป และสื่ออนไลน์แบบอื่นๆ  Hadoop เป็นโอเพ่นซอร์สเฟรมเวิร์คที่ถูกสร้างขึ้นมาในช่วงเวลาเดียวกันให้เป็นที่เก็บและวิเคราะห์ข้อมูลขนาดใหญ่ และในช่วงเวลาเดียวกัน NoSQL ได้ก็เริ่มขึ้นและได้รับความนิยมมากขึ้น

การพัฒนาโอเพนซอร์สเฟรมเวิร์ค เช่น Hadoop (และเมื่อเร็ว ๆ นี้ก็มี Spark) มีความสำคัญต่อการเติบโตของข้อมูลขนาดใหญ่ เนื่องจากทำให้ข้อมูลขนาดใหญ่ทำงานได้ง่าย และประหยัดกว่า ในช่วงหลายปีที่ผ่านมาปริมาณข้อมูลขนาดใหญ่ได้เพิ่มขึ้นอย่างรวดเร็ว ผู้คนยังคงสร้างข้อมูลจำนวนมาก ซึ่งไม่ใช่แค่มนุษย์ที่ทำมันขึ้นมา

การพัฒนาการของ IOT (Internet of Thing) ซึ่งเป็นเครื่องมืออุปกรณ์ที่เชื่อมต่อกับอินเตอร์เนตก็ทำการเก็บและรวบรวมข้อมูลซึ่งอาจเป็นเรื่องที่เกี่ยวกับพฤติกรรมการใช้งานของลูกค้า ประสิทธิภาพของสินค้า หรือการเรียนรู้ของเครื่องจักรพวกนี้ล้วนทำให้มีข้อมูลขนาดใหญ่

แม้ว่ายุคของข้อมูลขนาดใหญ่ Big Data มาถึงและได้เริ่มต้นแล้ว แต่มันก็ยังเป็นเพียงแต่ช่วงแรกๆ และระบบระบบคลาวด์คอมพิวติ้งก็ได้ขยายความเป็นไปได้มากขึ้น คลาวด์มีความสามารถในการในการใช้งานได้อย่างยืดหยุ่นได้

ตัวอย่างการนำ Big Data ไปใช้

ข้อมูลขนาดใหญ่หรือ Big Data ช่วยให้เราสามารถจัดการงานทางธุรกิจได้อย่างมีประสิทธิภาพ ได้ตั้งแต่การเก็บข้อมูลของลูกค้าเพื่อสร้างประสบการณ์ที่ดีให้กับลูกค้า เป็นต้น ต่อนี้ไปเป็นตัวอย่างเพียงส่วนหนึ่งของการใช้ข้อมูล Big Data

การพัฒนาผลิตภัณฑ์

บริษัท Netflix และ บริษัท  Procter & Gamble ได้ใช้ข้อมูล Big Data ช่วยในการคาดการณ์ความต้องการของลูกค้า พวกเขาสร้างโมเดลเชิงคาดการณ์สำหรับผลิตภัณฑ์และบริการใหม่ ๆ โดยการจำแนกคุณลักษณะที่สำคัญของผลิตภัณฑ์หรือบริการในอดีตและปัจจุบันและสร้างแบบจำลองความสัมพันธ์ระหว่างคุณลักษณะเหล่านี้กับความสำเร็จในเชิงพาณิชย์ของข้อเสนอ นอกากนี้ยังมีบริษัท P&G ยังใช้ข้อมูลของสื่อสังคมออนไลน์ในการวิเคราะห์ ในการทดสอบตลาดและเปิดตัวสินค้าในช่วงต้น เพื่อวางแผนการผลิตและเปิดตัวสินค้าใหม่

การคาดการณ์เพื่อการบำรุงรักษาเครื่องจักร

ปัจจัยที่ใช้ทำนายการชำรุดของเครื่องจักรนี้ มาจากข้อมูลทั้งที่เป็นแบบมีโครงสร้างเช่น วันเดือนปี ที่ผลิต รุ่น และข้อมูลที่ไม่มีโครงสร้าง เช่นข้อมูลจากเว็นเซอร์ต่างๆ เช่นอุณภูมิของเครื่องยนต์ การทำงานผิดปกติของเครืองจักร ซึ่งข้อมูลเหล่านี้จะต้องได้รับการวิเคราะห์ก่อนที่จะเกิดปัญหา การวิเคราะห์ข้อมูลเหล่านี้ เพื่อกำหนดตารางซ่อมบำรุง เพื่อประหยัดงบการซ่อมบำรุง และรวมไปถึงการสต๊อกอะไหล่ต่างๆ เพืท่อให้การซ่อมบำรุงได้อย่างมีประสิทธิภาพ ทันเวลา และประหยัดงบประมาณ


สร้างประสบการณ์ที่ดีให้กับลูกค้า

ในสภาวะการแข่งขันทางการค้าในปัจจุบัน การเสนอประสบการณ์และข้อเสนอที่ดีที่สุดและตรงใจแก่ลูกค้าที่สุดก็จะเป็นผู้ได้เปรียบในการแข่งขัน ข้อมูลขนาดใหญ่หรือ Big Data ช่วยให้ธุรกิจรวบรวมข้อมูลจากสื่อสังคมออนไลน์ ผู้เข้าชมเว๊ปไซท์ ผู้เข้าใช้แอพพลิเคชั่น ข้อมูลการตอบโต้ทางโทรศัพท์ ข้อมูลการสนทนาผ่านสื่อต่างๆ เพื่อช่วยให้ปรับปรุงการสื่อสารกับลูกค้า และเพิ่มมูลค่าให้ได้มากที่สุดด้วยการส่งข้อเสนอสุดพิเศษให้ตรงใจกับลูกค้า และยังช่วยแก้ปัญหาที่เกิดกับลูกค้า เป็นการแก้ปัญหาเชิงรุกได้อย่างมีประสิทธิภาพ

การตรวจสอบการโกงและการปฏิบัติตามกฎระเบียบ

การโกงในระบบเครือข่ายอินเตอร์เนตไม่ได้มีเฉพาะจากแฮกเกอร์เท่านั้น ซึ่งเราจะต้องเผชิญกับผู้เช่ยวชาญในหลายๆรูปแบบ ในระบบการรักษาความปลอดภัยสมัยใหม่นี้ได้มีการพัฒนาอย่างไม่หยุดนิ่ง การใช้ข้อมูลขนาดใหญ่สามารถทำให้เราระบุรูปแบบของข้อมูลที่เข้าในรูปที่มิชอบ และไม่ถูกต้องตามข้อกำหนดของเราได้

การเรียนรู้ของเครื่องจักร Learning Machine

การเรียนรู้ของเครื่องจักร หรือ Learning Machine กำลังเป็นที่นิยมอยู่ในขณะนี้ ข้อมูลโดยเฉพาะอย่างยิ่งข้อมูลขนาดใหญ่เป็นเหตุผลที่เราสามารถสอนเครื่องจักรได้ การมีข้อมูลขนาดใหญ่ทำให้ง่ายในการเตรียมข้อมูลในการสอนเครื่องจักรให้สามารถเรียนรู้ได้

ประสิทธิภาพในการปฏิบัติงาน

โดยปกติประสิทธิภาพในการปฏิบัติงานเรามักไม่ทราบว่าการดำเนินงานนั้นมีประสิทธิภาพเพียงใด แต่ในพื้นที่ที่มีข้อมูลขนาดใหญ่ ด้วยข้อมูลมูลขนาดใหญ่นี้ทำให้เราสามารถวิเคราะห์ และเข้าถึง การผลิตหรือการปฏิบัติงานได้ การตอบรับของลูกค้า รวมถึงปัจจัยอื่นๆที่จะทำให้ธุรกิจหยุดชะงักหรือขัดข้องได้ และสามารถคาดการณ์ความต้องการล่วงหน้าด้วยการวิเคราะห์ข้อมูลขนาดใหญ่ ข้อมูลขนาดใหญ่หรือ Big Data นี้ยังสามารถใช้เพื่อปรับปรุงการตัดสินใจให้สอดคล้องกับความต้องการของตลาดในปัจจุบันได้อีกด้วย

การขับเคลื่อนในการสร้างสรรค์สิ่งใหม่ๆ

ข้อมูลขนาดใหญ่สามารถช่วยคุณในการสร้างสรรค์สิ่งใหม่ ๆ ได้โดยการศึกษาความสัมพันธ์ระหว่าง บุคคล สถาบัน หน่วยงาน องค์กร และกระบวนการ และดำเนินการกำหนดวิธีการใหม่ในการใช้ข้อมูลเชิงลึกเหล่านั้น ใช้ข้อมูลเชิงลึกเพื่อปรับปรุงการตัดสินใจเกี่ยวกับการพิจารณาเรื่องการเงิน วางแผนและพิจารณาแผนงาน ตรวจสอบแนวโน้มและสิ่งที่ลูกค้าต้องการ นำเสนอผลิตภัณฑ์และบริการใหม่ ๆ ใช้การกำหนดราคาแบบไดนามิก ที่มีความเป็นไปได้ไม่มีที่สิ้นสุด

Big Data ข้อมูลขนาดใหญ่ มันทำงานอย่างไร

ข้อมูลขนาดใหญ่ให้ข้อมูลเชิงลึกใหม่ ๆ เพื่อเปิดโอกาสและรูปแบบธุรกิจใหม่ ๆ การเริ่มต้นใช้งานประกอบด้วย 3 ขั้นตอนสำคัญดังนี้

การรวบรวมข้อมูล

การรวบรวมข้อมูลของ Big Data เป็นการรวบรวมข้อมูลของจากหลากหลายทั้งที่มาและการใช้งานที่แตกต่างกันอย่างมากมาย ซึ่งกลไกและเทคโนโลยีแบบดั้งเดิม ETL (extract, transform, and load) ไม่สามารถทำได้ ซึ่ง Big Data หรือ ข้อมูลขนาดใหญ่ต้องการเทคนิค วิธีการ และเทคโนโลยีใหม่ในการรวบรวมข้อมูลขนาด เทราไบต์ และอาจจะเป็นระดับเพธาไบต์เลยก็มี

ในการรวบรวมข้อมูลนั้นต้องมีการประมวลผล จัดรูปแบบ ให้เหมาะสำหรับการใช้ในการวิเคราะห์หรือใช้งานสำหรับธุรกิจหรือวัตถุประสงค์นั้นๆ

การจัดการข้อมูล

ข้อมูลขนาดใหญ่ หรือ Big Data นั้นมีความต้องการสถานที่จัดเก็บขนาดใหญ่ การจัดเก็บข้อมูลมูลขนาดใหญ่จะเป็นชนิดใดก็ได้ไม่ว่าจะเป็นแบบ on premises หรือ แบบ cloud ขึ้นกับความต้องการหรือความสะดวกในการใช้ ซึ่งเราสามารถใช้และประเมินผลได้เช่นเดียวกัน บางครั้งก็มีความจำเป็นที่ต้องจัดเก็บไว้ใกล้กับแหล่งข้อมูล หรือข้อมูลบางอันต้องการความยืดหยุ่นสูงและไม่ต้องการบริหารจัดการก็ใช้เป็นแบบ Cloud ซึ่งกำลังเป็นที่นิยมกันเป็นอย่างมาก

การวิเคราะห์

การลงทุนสร้างข้อมูลขนาดใหญ่ หรือ Big data จะมีประโยชน์หรือคุ้มค่าก็ต่อเมื่อคุณใช้และวิเคราะห์ข้อมูล การวิเคราะห์ข้อมูลทำให้เกิดความกระจ่างและชัดเจนในชุดข้อมูลที่คุณมีอยู่ การสำรวจข้อมูลยังทำให้เราค้นพบสิ่งใหม่ แชร์สิ่งที่ค้นพบใหม่ๆต่อคนอื่น สร้างรูปแบบจำลองข้อมูล ด้วยการเรียนรู้ของเครื่องจักรและปัญญาประดิษฐ์ AI และนำข้อมูลเหล่านั้นไปใช้งาน

 ข้อมูลมีคุณค่า

“ในยุคของข้อมูลและสารสนเทศ มีปริมาณข้อมูลเพิ่มมากขึ้นทุกวัน จากผู้ใช้ที่มีอยู่ทั่วโลกจำนวนมาก ทำให้ข้อมูลกลายเป็นสิ่งที่มีมูลค่ามหาศาล มีการใช้ศาสตร์ที่เรียกว่าวิทยาการข้อมูล (data science) ซึ่งมีความสำคัญและช่วยให้ผู้ใช้เข้าใจความหมายของข้อมูล และในขณะเดียวกันผู้ใช้จะได้รับความรู้จากข้อมูลที่ผ่านกระบวนการวิทยาการข้อมูลด้วย” — หนังสือเรียนเทคโนโลยี (วิทยาการคำนวณ ม.5)

ยุคของข้อมูลและสารสนเทศ (Information Age)

ในยุคของข้อมูลสารสนเทศ ข้อมูลสิ่งที่มีความสำคัญอย่างยิ่ง ถูกนำมาใช้ประโยชน์ด้านต่างๆ เช่น ด้านเศรษฐกิจ การศึกษา สาธารณสุข สิ่งแวดล้อม การเกษตร และการคมนาคม การจัดเก็บข้อมูลในรูปแบบเดิม ทำให้การนำข้อมูลมาใช้ไม่สะดวก ไม่ทันกาล สูญหายง่าย

การจัดเก็บข้อมูลในรูปแบบดิจิทัล (digitization) และการพัฒนาการของการสื่อสารบนอินเทอร์เน็ต ช่วยแก้ปัญหาเหล่านี้ ทำให้ผู้ใช้สามารถเข้าถึงข้อมูลและสารสนเทศได้ทุกที่ทุกเวลา

  • แผนที่กระดาษในรูปแบบเดิม ไม่สามารถแสดงข้อมูลการจราจรที่เป็นปัจจุบัน และไม่สามารถวางแผนการเดินทางได้ แต่ระบบแผนที่นำทาง (Global Positioning System: GPS) นอกจากแสดงสถานที่ต่างๆ แล้ว ยังมีข้อมูลสภาพการจราจร ระยะเวลาเดินทาง ซึ่งมีความแม่นยำ ช่วยประหยัดเวลาและค่าใช้จ่าย
Image for post

ในปัจจุบัน เราไม่เป็นเพียงผู้ใช้ประโยชน์จากข้อมูลดิจิทัลเท่านั้น แต่ยังเป็นหนึ่งในผู้ร่วมสร้างข้อมูลดิจิทัลด้วยเช่นกัน

  • การอัพโหลดรูปภาพส่วนตัว การส่งอีเมล์ในแต่ละวัน การโพสต์ข้อความในสื่อสังคมออนไลน์ การส่งต่อข้อความผ่านอุปกรณ์อิเล็กทรอนิกส์ต่างๆ เป็นต้น ซึ่งข้อมูลดิจิทัลเหล่านี้ ผู้ใช้คนอื่นสามารถนำไปใช้ประโยชน์ต่อได้
  • จัดได้ว่าข้อมูลเหล่านี้เป็นสินทรัพย์ (Asset) ที่มีความสำคัญ แต่หากข้อมูลที่มีอยู่ไม่ได้ถูกนำมาประมวลผล ก็จะไม่เกิดคุณค่าใดๆ ดังคำกว่าที่ว่า “ข้อมูลนั้นมีค่าดั่งน้ำมันดิบ”
Image for post

บริษัทต่างๆ นำข้อมูลดิจิทัลมาใช้ประโยชน์ทำให้เกิดมูลค่ามหาศาล เช่น บริษัทให้บริการจองโรงแรมที่พัก แท็กซี่ ขายสินค้าออนไลน์ และบริการสื่อสังคม (social media)

เฟซบุ๊ก (Facebook) เป็นบริษัทให้บริการสื่อสังคม มีผู้ใช้หลายล้านคนทั่วโลกโดยไม่คิดค่าใช้จ่าย แต่สามารถสร้างรายได้จากการขายโฆษณาที่ตรงกับกลุ่มเป้าหมาย (user-targeted advertisements) ของบริษัทสินค้าและบริการ

Image for post

  • เฟซบุ๊ก รวบรวมข้อมูลผู้ใช้ เช่น เพศ อายุ ที่อยู่ อาชีพ รวมถึงพฤติกรรมการใช้งานที่ผู้ใช้กระทำผ่านเฟซบุ๊ก ได้แก่ การกดไลค์ (like) กดแชร์ (share)
  • เฟซบุ๊ก นำข้อมูลเหล่านี้มาประมวลผลเป็นสารสนเทศที่บอกคุณลักษณะของผู้ใช้ และใช้สารสนเทศนี้ในการนำเสนอหรือโฆษณาสินค้าหรือบริการ
  • บริษัทเจ้าของสินค้าหรือบริการ จะจ่ายค่าโฆษณาให้กับเฟซบุ๊ก เช่น บริษัทธุรกิจรถยนต์ ธนาคาร อาหาร-เครื่องดื่ม โทรศัพท์มือถือ ร้านค้า เกมออนไลน์
  • การนำข้อมูลดิจิทัลที่มีอยู่มหาศาลมาใช้ประโยชน์ในด้านต่างๆ ความรู้ทางด้านวิทยาการข้อมูลจึงมีบทบาทสำคัญ และอาชีพนักวิทยาศาสตร์ข้อมูลจึงมีบทบาทสำคัญ เป็นอาชีพที่น่าสนใจ และได้รับความนิยมเป็นอย่างมากในยุคของข้อมูลและสารสนเทศนี้


วิทยาการข้อมูล (Data Science)

       ประเทศสหรัฐอเมริกา รายงานข้อมูลว่าประสบปัญหาขาดแคลนผู้มีทักษะการวิเคราะห์เชิงลึก และการจัดการข้อมูลจำนวนมหาศาล เพื่อให้ได้ข้อมูลผลลัพธ์ที่มีความสำคัญและเป็นประโยชน์ต่อการตัดสินใจของฝ่ายบริหาร การทำงานในลักษณะนี้ ต้องอาศัยความรู้และทักษะผสมผสานศาสตร์หลายด้านเข้าด้วยกัน ซึ่งเรียกว่า “วิทยาการข้อมูล”

  • วิทยาการข้อมูล เป็นศาสตร์ที่เกี่ยวข้องกับกระบวนการ วิธีการ หรือเทคนิค ในการนำข้อมูลจำนวนมหาศาลมาประมวลผล เพื่อให้ได้องค์ความรู้ เข้าใจปรากฏการณ์ ใช้ตีความ ทำนาย พยากรณ์ ค้นหารูปแบบ แนวโน้มจากข้อมูล และสามารถนำมาวิเคราะห์ต่อยอด เพื่อแนะนำทางเลือกที่เหมาะสมไปใช้ในการตัดสินใจเพื่อประโยชน์สูงสุด
Image for post
Image for post

  กำลังโหลด…